
Flutter Postflutter,andControl
of a SupersonicWing Section

P.Marzocca, L. Librescu, W. A. Silva

Repdnted from

Journalof Guidance,Control,and Dynamics
Volume25, Number5, Pages962-970

.6A/A/i
A publicationof the
AmericanInstituteof AeronauticsandAstronautics,Inc.
1801 AlexanderBellDrive,Suite500
Reston,VA20191-4344



JOURNAL OF GUIDANCE, CONTROL, AND DYNAMICS

Vol. 25, No. 5, September-October 2002

Flutter, Postflutter, and Control of a Supersonic Wing Section

Piergiovanni Marzocca* and Liviu Librescu*

Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0219

and

Walter A. Silva*

NASA Langley Research Center, Hampton, Virginia 23681-2199

A nmnbcr of Issues rdated to the flutter and po6tflutter of two-dimensional supersonic lifting surfaces are
addressed. Among them there are the 1) investigation of the implications of the nonlinear unsteady aerodynamics
and structural nonlinearities on the stable/unstable character of the limit cycle and 2) study of the implications

of the lnencporatloa of a control capability on both the flutter boundary and the postilutler behavior. To this
end, a powerful methodology based on the Lyapunov first quantity is implemented. Such a _eatment of the
problem enables one to get a better understanding of the various factors Involved in the nonlinear aeroelasttc
problem, including the stable and unstable limit cycle. In addition, it constitutes a first step toward a more general
investigation of nonllnenr aeroelastic phenomena of three-dimensional lifting surfaces.
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Nomenclature VF, XF

= speed of sound Vz

= semichord length
= linear viscous damping coefficients w

in plunging and pitching, respectively XEA, x0

= plunging displacement and its dimensionless
counterpart (= h/b), respectively

= mass moment of inertia per unit span
= linear stiffness coefficients in plunging ot

and pitching, respectively F
= nonlinear stiffness coefficient in pitch and its 8s, 8A, _c

normalized counterpart [Eq. (5)], respectively
= unsteady lift and moment per unit wing span,

and their dimensionless counterparts, (h, _.

(L,,b /mU_) and (Mab2 / l,_U2 ), respectively
= nonlinear moment control; linear K

and nonlinear control gains #
= nonlinear restoring moment _Pl, Ip2

= undisturbed flight Mach number, Uoo/a_,
and its normalized counterpart, Moo/ (Izx_r_), wh, w_, &

respectively
= airfoil mass per unit span

= pressure, air density, and speed of sound
of the undisturbed flow, respectively

= dynamic pressure, ]loooue_l 2 Superscripts
= dimensionless radius of gyration with respect

to the elastic axis, _/(la/mb 2) ' /

= static unbalance about the elastic axis

and its dimensionless counterpart,

Sdmb, respectively
= time variable and its dimensionless

counterpart, U_t/b, respectively
= freestream speed and its dimensionless

counterpart, U_o/bto,, respectively
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= speed and frequency of flutter
= downwash velocity normal

to the lifting surface
= transverse displacement

= elastic axis position measured from the

leading edge (positive aft) and its

dimensionless counterpart. XEA/b,

respectively

= twist angle about the pitch axis

= aerodynamic correction factor
= tracing quantities identifying the structural,

aerodynamic, and nonlinear control terms,

respectively
= damping ratios in plunging and pitching,

ch /2mtoh and c_ /21¢,w_, respectively

= isentropic gas coefficient
= dimensionless mass ratio, m/4pb 2

= linear and nonlinear normalized control gains,

f l / K,, and f 2/ K,. respectively

= uncoupled frequencies of the linearized

aeroelastic system counterpart in plunging

_/(Kh/m), pitching _/(KdI_), and frequency
ratio (wh / w_ ), respectively

= time derivative and its dimensionless

counterpart, respectively

Introduction

IGH-SPEED and high-performance combat aircraft perform
aggressive maneuvers that can result in significant reductions

in the flutter speed. Moreover, the tendency to increase structural
flexibility and maximum operating speed increases the likelihood of

flutter within the aircraft operational envelope. This can jeopardize

aircraft performance and dramatically affect its survivability. To
prevent such events from occurring, two principal issues need to be

addressed: 1) increase of the flutter speed without weight penalties
and 2) investigation of the possibilities of converting the unstable

limit cycle into a stable limit cycle. The successful accomplishment
of the second issue will permit the crossing of the flutter boundary

without danger of a catastrophic failure. In such a case, however,

structural fatigue becomes a concern.

Before addressing these issues, the search for the aeroelastic in-

stability of lifting surfaces encompasses two basic problems. One

of these, based on the linearized aeroelastic equations, allows de-

termination of the flutter boundary. The second one, based on the

nonlinear approach to the aeroelastic problem, allows determination
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of the character of the flutter boundary. In this sense, the flutter
boundary can feature either benign or catastrophic behavior.

Because of the necessity of avoiding flutter and/or flutter-related

airplane performance restrictions, it appears that determination of
both the flutter boundary and of its character, that is, catastrophic or

benign, and the possibility of controlling both of these present con-
siderable practical importance. The goal of the control is to expand
the flight envelope without weight penalties by increasing the flutter

speed and to convert the catastrophic flutter into benign flutter.

The concept of catastrophic and benign types of flutter can be

found in the specialized literature under different connotations that

depend on the particular approach of the problem. The terminology
of benign or catastrophic flutter 1-4 is synonymous with that of stable
and unstable limit-cycle oscillation (LCO), _-lt also referred to in

the literature as supercritical and subcritical Hopf bifurcation t2 (also
Refs. 7, 13, and 14), respectively. The various terminologies related
to the character of the flutter boundary and a few sources where

these can be found are shown in Table 1. These terminologies are

used throughout the paper.
In this study, the issues related to both the increase of the flutter

speed and the character of the flutter boundary, as well as of their
control, will be addressed. In the aeroelastic governing equations,
the various nonlinear effects on which basis is possible to analyze

the character of the flutter boundary will be incorporated. An ac-

tive control methodology capable of expanding the flutter bound-

ary and of converting the unstable LCO into a stable LCO will

be implemented. The nonlinearities to be included in the aeroelas-
tic model can be structural, that is, arising from the kinematical

equations, 7-9'11 physical, that is, those involving the constitutive

equations, 2-4Js'16 or aerodynamic appearing in the unsteady aero-

dynamic equations. 2-4'6'17 Their contribution can be beneficial (be-

nign flutter boundary) or detrimental (catastrophic flutter boundary).

A discussion of this issue in the context of the panel flutter may be
found in Refs. 2-5.

The nature of the LCO, which provides important information on

the behavior of the aeroelastic system in the vicinity of the flutter

boundary, canbe examined by the nature of the Hopf bifurcation 12of
the associated nonlinear aeroelastic system. 7,t3J4 Figure 1 presents

Table I Terminologies of the dynamics of nonlinear
aeroelastic system

Terminologies Selected references

Benign/catastrophic
flutter boundary

Stable/unstable LCO

Supercritical/subcrifical
H.B t2

Bolotin I and Librescu 2-4

Dowell, 5 Friedman and Hanin, 6

Lee et al.,7 Lee and Kim, 8 Mei 9
Morino, to Strganac et al.,t I

Holmes, t3 Lee et aJ.,7
Mastroddi and Morino ]4

several pertinent scenarios; V = VF defines the flutter boundary that

can be determined via a linearized analysis. The nonlinear approach

to the problem enables one to determine the aeroelastic behavior in

the vicinity of the flutter boundary. As a result of the nonlinear anal-

ysis, one can determine the aeroelastic behavior for a flight speed
lower than the flutter speed VF (curve l),thatis, for V < Vr,where a

subcritical aeroelastic response is experienced. For V > VF, the sys-
tem can exhibit either a stable LCO (supercritical Hopf bifurcation 12

(H-B), curve 2), or an unstable LCO (subcritical H-B, curve 3).

In this paper, a general approach to the problem of the stability
of the LCO of supersonic/hypersonic two-dimensional lifting sur-

faces is addressed. This methodology enables one to accomplish a

parametric study over a large number of parameters that character-

ize the aeroelastic system, t7 Literature dealing with the problem of

the determination of the flutter boundary of a supersonic/hypersonic
wing section and on the nature of the LCO in the presence of both

structural and aerodynamic nonlinearities is quite scarce. 2-4

Nonlinear Model of the Wing Section

Incorporating Active Control

The aeroelastic governing equations of controlled wing section
featuring plunging and twisting degrees of freedom, elastically con-

strained by a linear translational spring and a nonlinear torsional
spring exposed to a supersonic/hypersonic flow field are 18

mh(t) + S.&(t) + chh(t) + Khh(t) = La(t) (l)

S.kt(t) + I._(t) + c,,&(t) + M. = Ma(t) - Mc (2)

where h(t) is the plunging displacement (positive downward), or(t)

is the pitch angle (positive nose up), and the superposed dots denote

differentiation with respect to time t. Moreover, in Eq. (2)

M_ = K.ct(t) + ,SsI(_ct3(t) (3)

represents the overall nonlinear restoring moment that involves both

the linear and the nonlinear stiffness coefficients, K,_ and/_,,, respec-

tively. The tracer 8s in Eq. (3) can take the value 1 or 0 depending on

whether the nonlinearity is included or ignored, respectively. Within
a linear model (Ss = 0), Mr reduces to K_ct(t). The nonlinear coef-

ficient/(a in Eq. (3) can assume positive or negative values. Positive

values of K,_ account for hard structural nonlinearities, whereas neg-
ative values of K_ account for soft structural nonlinearities. (Notice

that this nonlinearity appears in the present case in the equation

relating the restoring moment with the pitch angle and that it has
the character of a constitutive equation. For this reason, it would be

more appropriate to refer to these as physical nonlinearities.) The

active nonlinear control can be represented in terms of the moment
Mc in a similar functional form as

Mc = flu(t) + 8cfEct3(t) (4)

Subcriflcal H-B ) __1

I::: !_!!

" ! / \ .,.a

1 _/ (Stable LCO)
Vp V

Fig. 1 Character of the flutter boundary in the terms of LCOs ampli-
tudes.

In Eq. (4) fl and f2 are the linear and nonlinear control gains,
respectively. Within a linear active control methodology, the tracer

assumes the value 3c = 0. Reducing the aeroelastic equations to
dimensionless form, we define the parameter B that represents a

measure of the degree of the structural nonlinearity of the system

and two normalized linear and nonlinear control gain parameters ¢1
and aP2, respectively, as

B = K./K. (5a)

7:t = fl/K, (5b)

qt2 = f2/K. (5c)

Corresponding to B < 0 or B > 0, the structural nonlinearities are
soft or hard, respectively, whereas for B = 0, the system is struc-

turally linear.
The nonlinear unsteady aerodynamic lift and moment, from

piston theory aerodynamics (PTA), 19'2° defines pressure on the

upper and lower faces of the lifting surface as p(x, t)=
2

pot[1 +v=(r- 1)/2a_] 2x/(_-l), where a_o=rp_/p_; v.. is the
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downwash velocity normal to the lifting surface expressed as 19 Vz =

-(Ow/Ot + UooOw/Ox)sgnz; w is the transversal displacement of
the two-dimensional lifting surface, w( t ) = h ( t ) + ot( t )(x - XEA);

and sgn z is the sign distribution that assumes the values 1 or - 1 for

z > 0 and z < 0, respectively. In addition, XEA = bxo is the stream-

wise position of the pitch axis measured from the leading edge

(positive aft).
Retaining in the binomial expansions of p(x, t), the terms up to

and including (vJaoo) 3, yields the pressure formula for the PTA in

the third-order approximation 2'3"21

p/p_ = 1 + ryVz/aoo + r(r + l)/4(yvz/ae_) 2

+ r(K + l)/12(yvz/aoo) 3 (6)

The aerodynamic correction factor y = M_/_/(M 2 - 1) enables

one to extend the applicability of the PTA to the low supersonic

flight-speed range. 21'22Equation (6) is valid as long as the transfor-

mations through compression and expansion axe considered to be

isentropic, that is, as long as the shock losses would be insignifi-

cant (low-intensity waves). On the other hand, a more general pres-

sure expression, obtained from the theory of oblique shock waves
(SWT), that is valid over the entire supersonic/hypersonic range was

obtained in Refs. 21 and 22, and it was used in aeroelastic analyses

in Refs. 2-4. It is given by

p/p_ = 1 + Kyvz/a_ + r(K + l)/4(yvz/ae_) 2

+ r(r + l)Z/32(yv_/a,o) 3 (7)

With the exception of the cubic terms, Eqs. (6) and (7) resemble

each other. This is explained by the entropy variation appearing

in the pressure expansion, beginning with the third-order terms. In
contrast to Eq. (6), Eq. (7) encompasses additional features in the

sense of 1) taking into account shock losses that occur in the case
of strong waves, 2) being applicable over a wider range of angles of

attack (¢ < 30 deg) and Mach numbers (M >_ 1.3) (Refs. 21 and 22),

and 3) being applicable to Newtonian speeds (M---+ oo, y---> 1).

Comparison of results showing the unstable and stable LCOs using

the PTA and SWT will be presented next.

The two coefficients of the cubic terms in the two equations differ

by 10% for r = 1.4, and so, for a more accurate prediction of the
character of the flutter instability boundary, it should be included

(Ref. 20). However, within a linear stability analysis, the flutter

speed evaluated via these two expressions by SWT and PTA does
not exhibit any differences.

A comparison of the flutter speed vs flight Mach number obtained
from the PTA and SWT, including and discarding the correction

factor y, is shown in Fig. 2. In addition, in the same figure, the

flutter boundary obtained via the use of the linearized supersonic

unsteady aerodynamics as provided by Garrick and Rubinow, 23 is

also supplied. In the low-supersonic flight-speed regime, the PTA

and SWT with the corrective term provide a rather good agreement

14

10

8

6

/"

1.5 2 2.5 3 3.5 4 4.5 5

M IIiIa

Fig. 2 Comparison of the predictions of the flutter speed vs the flight
Mach number when using PTA, SWT, and the exact unsteady super-
sonic aermiynamics: /z = 100, Xo = 0.25, _ = 1.2, r_ = 0.5, _ = _k = O,
and x0 = 0.5.

with the flutter predictions reached via the supersonic flow theory, z3
and as a result, this correction should be included. At the same time,

for higher supersonic Mach numbers, the differences in the flutter
predictions based on the indicated aerodynamic theories practically

disappear. In the next developments, unless otherwise stated, PTA

will be applied. A comparison of the predictions of the benign and

catastrophic character of the flutter boundary, based on these two

aerodynamic theories, will be shown subsequently.
When the case of the flow on both surfaces of the airfoil with the

speed U + = Uo_ = Uoo is considered, from Eq. (6) the aerodynamic

pressure difference 8p can be expressed as

8PI_A = (4q/Moo)y[(w,,/U_ + W,x)

+ (1 + r)/12yZM2(w,,/Uoo + W,x) 3] (8)

In the next developments, the nonlinear aerodynamic damping in

Eq. (8), that is, the terms associated with (w,t) z and (w.) 3, will be
discarded, and consequently, the cubic nonlinear aerodynamic term

reduces to the (w,x) 3 only. The study of the implications of the non-

linear aerodynamic damping on the nature of the LCO constitutes
an important problem, which is not addressed in this paper.

Next, the nonlinear unsteady aerodynamic lift La(t) and moment

Ma (t) per unit wing span can be obtained from the integration of the

pressure difference on the upper and lower surfaces of the airfoil:

L.(t) = _p dx (9a)

Mo(t) = - _p(x - XEA) dx (9b)

The final expressions can be cast in compact form as

La(t) = -(bUoopo_/3Moo)y {12U_ot(t)

+ 8aM2U_(1 + r)y2ct3(t) + 12[h(t) + (b -XeA)&(t)]]

(10a)

Ma(t) = (bU_p_/3M_)y { 12Uc_(b - XEA)Ce(t )

-1-t_aM2U_(b - XEA)(1 + K)y20t3(t) + 413(b -- XEA)h(t)

+(4b2--6bx_ + 3x2)&(t)] ] (10b)

where _a is a tracer that is set equal to 1 if the aerodynamic nonlin-

earity is included or set equal to 0 if the aerodynamic nonlinearity

is ignored.
As a result, the governing equations (1) and (2) considered in con-

junction with Eqs. (10a) and (10b) feature inertial and aerodynamic

coupling. Using the dimensionless time r = U_t/b, the system of

governing equations can be expressed as

_"(r) + X_"(r) + 2(h(&/V)_'(r) + (&/V)2_(r) = la(r) (11)

(x_/r2)¢"(r) + a"(r) + (2(a/V)_'(r) + l/VZa(r)

+ I/V2Bot3('_) -_-ma('C) -- ¢1/V2o/('_) -- 1]t2/V2o'3(r) (12)

In these equations, the dimensionless aerodynamic lift and moment

are represented as

la(r) = -(y/12#Moo) {12or(r) + _AM2(1 + g)y20t3(r)

+ 12[_'(r) + (b - XEA)/bct'(r)] ] (13a)

rna(r) = (r/12#M_)(1/r z) {12(b - x_)/bot(r)

+ 8AMZ(b - XEA)/b(1 -I- r)y2a3(r) + 413(b - xv.A)/b_,'(z)

+(4b2--6bxEA + 3x2)/b2ot'(r)]} (13b)

where _ = h/b is the dimensionless plunging displacement and the

primes denote differentiation with respect to dimensionless time r.
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When the procedure developed by Bautin 24 and Lyapunov 25 is

used, pertinent conditions defining the character of the flutter bound-

ary (benign or catastrophic), can be determined. These conditions
are expressed in terms of the sign of the Lyapunov first quantity 4
L(Ve) determined on the flutter boundal'y. 2-4'24 Specifically, the

inequalities L(Vr) < 0 and L(VF) > 0 define the benign (supercrit-
ical) and catastrophic (subcfitical) nature of the flutter boundary.

The application of Bautin's procedure 24 requires that the character-

istic equations obtained on the flutter boundary exhibit either one

root or two roots that are purely imaginary. These conditions are

equivalent to the H-B theorem. 12

The Lyapunov first quantity 4 L(Vr) corresponding to the nonlin-

ear flutter of the wing section in a supersonic/hypersonic flowfield is
derived next and is used to determine the conditions that characterize

the nature of the flutter boundary.

The governing equations (11) and (12) are converted to a system
of four differential equations in the form 2-4'24

4
dxj .
d---_-= Z a2)xm W Pj(xl,x2, x3, x4), j=l,4 (14)

m=l

The functions P: (Xl, x2, x3, x4) include the structural, aerodynamic,
and nonlinear control terms that can be cast as

4 4 4

= +2F, a,V'x,x,+ °2x:
i=1 i,l_l i=l

(i_t)

4 4

3 _'_ q) z
+ .7-aiitxixt+6 E afflxixtxk (15)

LI _ 1 i3,k _ I

li #,l) li _l#k)

For the present case, Eqs. (14) and (15) reduce to a state-space form:

dxm
-- = x3 (16a)
dr

dx2
-- = x4 (16b)
d_

__ = + _,azz2xz ( r )
dr

<3_3 a_3>x3(r)+ a_3)x4(r) (16c)-'[- _ca222X2 ('C ) "b

dx4 al,,)xl(_)+a_4)xz(_) <4) 3 _4) 3= + 8aa222x 2(_) + 8sa222x 2(v)
dr

(4) 3 a_4)x3(r) +a(g4)X4(_) (16d)+ 8ca222x2 (z) +

where

= xt, a = xz, _' = x3, a' = x4 (16e)

The linear active control appears in the coefficients a_3) and a2(4),
whereas nonlinear control terms are included in the terms accom-

panying the tracer 8c- The coefficients of Eqs. (16) are given in
Appendix A. When the streamwise position of the pitch axis co-
incides with that of the midchord, xo = 1, the nonlinear aerody-

namic terms become negligible as the aerodynamic pitching moment
vanishes.

When the solution of Eqs. (16) is considered in the form

xj = Ay exp@ot), the characteristic equation corresponding to the
linearized system obtained on the flutter boundary is

094 + p¢.o 3 +qo) 2 +r(.o+s = 0 (17)

where

p = {Vy[4 + 3x 2 + 6xo(Xa - 1) - 6X.] + 3r2(Vy

+ 2M_Iz_a + 2Modxgo(n)}/3MoouV(rZ_ - X_) (18a)

q = {3Moottr_LM_ou(1 + 6Jz + qq) + 2G(Vy + 2ModttbG)J

+ Vy[V(y + 3Moo# - 3M_#x_,)

+ 8Moo_(oCh + 6M_#(ox_¢h

- 3u .xo(V (18b)

= + *,)4+
(18c)

r = {3r2L2Moou_o_¢,,+ (1 + ¢_,)(v× + 2Moou_)J

+ Vy(o[3(ox 2 - 6xo(ff; + V(h)

+ 2(26)+ 3V.)]]/aMoouV3(r 2 - X2) (18d)

Three of these parameters, namely, q, s, and r, include the linear

control gain _p_. This has important implications on the possibility

of controlling the nature of the LCO and the flutter boundary. For

steady-state motion, the equilibrium is stable if the real parts of
all of the roots of the characteristic equation are negative, z52_ The

analysis of the roots of this equation leads to the Routh-Hurwitz

(R-H) conditions which define the parameter bound for the stability

of the system. The R-H conditions reduce to the inequalities p > 0,

q > O, r > O, s > O, and 91 = pqr - sp 2 - r 2 > 0. For the aeroelastic

stability problems, for which the condition A_ =sp/r + p2/4 > 0

should be satisfied, the roots of the characteristic equation on the
critical flutter boundary _ = 0, are given by

tOi, 2 : +ic, m3,4 = -e 4- in where i = _ (19a)

c _ = r/p, e = +p/2

n _ = sp/r - pZ/4, n > 0 (19b)

Equation (19a) is a necessary requirement for the determination of

L(V_) and constitutes a statement of the applicability of the H-B
theorem as well./2,24

For sufficiently small values of the speed V, all of the roots of
the characteristic equation are in the left-hand side of the complex

plane, and the zero solution of the system is asymptotically stable.
For the value V = VF, two roots of the characteristic equations are

purely imaginary, and the remaining two are complex conjugate and
remain in the left-hand side of the complex plane (critical flutter
velocity).

To identify the benign and catastrophic character of the flutter

boundary, it is necessary to solve the stability problem for the system
of equations in state-space form in the critical case of a pair of pure

imaginary roots. The expression of the flutter boundary 91 for the

wing section is

2
91 = {3Moolz_o2[V2y(xo - 1) -- M_#(I + _)ra]13r_(V Y

+ 2MoolZ(,_ + 2Mootz_(h) + Vy[4 + 3x 2 + 6xo(Xa -- 1)

2 2 2 -2
-6X.]} 2- 3MoJz {3r.[2Moo/tco G +(I + *,)(Vy

+ 2Moo/z_bG)] + Vy(o[4(o + 3(ox o + 6VG - 6x0(tb

2 z {3r_[2M_/z692G, + _p,)(Vy+ V(n)]] (r. - X_) + + (1

+ 2Moo/z&(n)] + Vy&[4go + 3&x_ + 6V(_,

- 6xo(& + VG)]]{3rJ(Vy + 2Mo_u(,_ + 2Moo#d_G)

+ Vy[4 + 3x 2 + 6xo(X_ - 1)- 6x_l]13Mool_r2.[Moolz(1

+&2 + qt,) + 2G(Vy + 2Modz_()] + Vy[8M_tx_(_,

+ 6M_o#&x2r, n -3M_#xo(V + 4£oG) + V(y + 3M_I_

-3M_IzX_)]I}/27M4V6#4(4-X_)3:0 (20)

Notice that this expression is general and includes the relationship
between the flutter speed and the flutter frequency parameters eval-

uated on 9t = 0 in terms of the basic geometrical and flight param-

eters. In the particular case in which the structural damping ratios
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Fig. 3 Flutter speed vs flight Mach number; influence of the linear
control gain _i.

in plunging and pitching are ignored and y =_ 1, the expressions of
flutter frequency XF and flutter speed VF reduce to

x, = = +. - x0)2+

-2X,(1-xo)]/l(l+_l)r z + &2[(1 - xo)2 +½]} (21)

and

Ur /_M
vr=

bw. -- ,/27

- - Z)r (X,- 1)
x M[(l+,,)Xa+(l_xo)(d)2gF_(l+_q))]__(l+_/O

(22)

respectively.

Equations (21) and (22) represent the dimensionless flutter fre-
quency and flutter speed of the actively controlled system. These
constitute the extension of the equations obtained by Ashley and
Zartarian, _9 to include active control.

In Fig. 3, the dependence of the dimensionless flutter speed as
a function of the Mach number for selected values of the feedback

gain ¢q is presented. It clearly appears that, with the increase of the
linear control gain, an increase of the flutter speed is experienced.
Moreover, as values of _Pl are increased, the efficiency of the active
control is increased.

The expression of the Lyapunov first quantity 4 is given in

closed form in Refs. 2 and 4. For the present case, the Lyapunov
first quantity 4 is expressed in terms of the coefficients A_ as

(Appendix B)

L(V,) (3_r/4c)(A(1',), _(z) _ a(2) "(') ] (23)-]- /t222 ) "_112 + "t122]

The terms in the parentheses of Eq. (23) are expressed via the coef-
• (j)

fic,ents akt_ appearing in Eqs. (15) as

ak_ = - (3) ^(1/Ao)(OQ3a222ot2kot21a2z + _jaa2(;)2ot2kot2/azs ) (24)

whereas the coefficients of the system of Eq. (24) are

rJx.a(3)
222 = (_sB + _c_t2)

- xo)

Moo(Z "[- K)Y3[(XO -- Z)xa +r 2]

-- t$a
xo)

= (dsSNL + c_cCNL)X,, -- _aANL[(X0 -- 1)g. + r2] (25a)

(4) -(_sB + &c_2)a222

V (r -xo)

Moo(l + r)y3(xo - 1 + X_)

12.(: - x.)
= --($sSNL + '$cCNL) + _$AANL(Xo-- 1 + X,) (25b)

The dimensionless structural, aerodynamic, and control nonlinear-
ities are defined as

Sre_ = B (26a)
V2(rZ-x,)

Moo(l + IC)y 3
Ato_ = (26b)

12.(r -

C_L = _2 r2 (26c)

V2(r2-xct )

where VF is the flutter speed. Upon defining _y_, = [a/p] -I and
having in view that, according to Eqs. (19b) c>0, the Lyapunov

first quantity 4 reduces to

L(VF) = (Z13a(_.3) 2 q- Zt4a_)ot231 + (_23a_2 "at- ,_24a2(42)2)¢_232

[_ _(3) (4) 2 (3)+ I 23"222 + _24a222)°/22°/12 + (_13a222 + c_ (4) \Or Ot2,ol4a222) 12 22

(27)

When the expressions of S_,_, ASL, and Cro_. [Eqs. (26)] are used

and the procedure devised in Refs. 2-4 is applied, the benign or

catastrophic character of the flutter boundary defined as L (Ve) < 0

or L(Ve) > 0, respectively. These conditions can be restated as 4

V_ < V, (28a)

or

where

V_ > V_ (28b)

V f = ALIA2 (28c)

In Eq. (28) the parameter A_ includes the structural nonlineari-
ties and the nonlinear control gain parameter, whereas A2 includes

the aerodynamic nonlinearities. Their expressions are provided in

Appendix C.
In the absence of the nonlinear control and for B < 0 (soft struc-

tural nonlinearities), Vr is negative. The relation Ve > V, corre-

sponds to the catastrophic flutter boundary (unstable LCO) and

occurs for any supersonic flight Mach number. For this case, an

unstable LCO is experienced even in the presence of the linear con-
trol. On the other hand, for B > 0 (hard structural nonlinearities),

the transition from benign to catastrophic flutter (from stable to the
unstable LCO) occurs at an increased flight Mach number in the

presence of the linear control.

As a special case, for x0 = 1, Eq. (23) reduces to the following
form:

L(VtO = (tisSrrc + &cCNL)L(_,3x= - z,,),_, ÷ (_23Xa -- _24) 0/3

+ (_23Xa -- _24)¢_22"22 "1- (_13Xa -- _t4)a,2a22J

+ -

(29)
In this case, a decrease of the influence of the aerodynamic nonlin-

earities on the aercelastic system is experienced.

Stability in the Presence of Active Control
To enhance understanding of the effect of the active control on the

character of the flutter boundary, some explanations are provided in

Figs. 4a and 4b. In Fig. 4a, the intersection point between the two

curves V_ and V, separates the benign flutter boundary (stable LCO)

characterized by Ve < V, from the catastrophic flutter boundary
(unstable LCO) defined by Vr > V_. For these cases; a change in

the sign of the Lyapunov first quantity 4 L(V_) occurs (Fig. 4b). In

this context, the following four possible scenarios are distinguished:

1) for V < VF, as time unfolds, a decay of the motion amplitude
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V _ Vr<Vr

F

Flutter Boundary
(Stable LCO)

a) In the (V-- Mfltgbt) plane

--V >Vr
F

c,,mm_pl_
Flutter Boundary
(Unstable LCO)

Ml_t

s

C_

_- 0

@
e_

e_
a

,,_ Unstable LCO
[,'

L> 0

•.---""11
L< 0 [,

Stable LCO

b) In the (L -- Mnight) plane

Fig. 4 Generic representation of the flutter boundary, L < 0 corre-
sponds to Vr > VF and vice versa.

2 .

\ _, '._ Soft Strmctnrll NH#I_WI_ o_y

1.5 - _, = 0;6_ = I;B = -50: L > 0;'¢M,.r_ ,

- -. "" Aeroo'ymm_¢ Needhtemritte_ oily
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, /' /" Both Noalinemrlti_

0.4 0.8 1.2 1.6 2.0 2.4

Fig. 5 Influence of the structural and aerodynmnical nonlinearities on
the Lyaponov first quontity 4 L for the uncontrolled wing _lom

is experienced, indicative of subcritical response; 2) for V = Vv,

the center limit cycle occurs, indicative of a periodic orbit; 3) for
Vr > VF, the LCOis stable; and4)for VF > Vr, the LCOis unstable.

The parameters for the simulations, are chosen as /_ = 100,
X,_=0.25, (o= 1.2, r,_ =0.5, _ =(h =0, x0 =0.5, y = 1, K = 1.4,
8a =3s =Sc =l, andB =50.

The effect of structural nonlinearities on the character of the flutter

boundary is studied in terms of the nonlinear parameter B [Eqs. (3)
and (Sa)]. For the present simulation, the aercelastic system appears
to be characterized by a catastrophic flutter boundary in the upper

half-plane (unstable LCO) and by a benign flutter boundary in the
lower half-plane (stable LCO). In Fig. 5, the Lyapunov first quantity 4
L(VF) for cases in which the soft and hard structural and aerody-
namic nonlinearities are involved is presented. It appears that in

the presence of only the aerodynamic nonlinearities, Lyapunov first
quantity becomes positive for any flight Mach number. This result

reveals that aerodynamic nonlinearity induces a catastrophic flutter
boundary, implying that a suberitical H-B occurs. On the other hand,

in the presence of hard structural nonlinearities only, the opposite
situation is experienced. At relatively moderate supersonic flight
Mach numbers, a benign flutter boundary is encountered, which be-

comes catastrophic as the Mach number is increased. This implies

that for higher Mach numbers the effects of the aerodynamic non-
linearities become prevalent. It is also shown that in the case of high

Mach numbers, the neglect of nonlinear aerodynamic terms yields
inadvertent predictions related to the character of the flutter bound-
ary. Moreover, when the aerodynamic nonlinearities are discarded

(_a = 0) for any flight Mach number, the flutter boundary is benign

or catastrophic, depending on whether hard (B > 0) or soft (B < O)
st_acmral nonlinearities are present, respectively.

The influence of the hard structural nonlinearities, in conjunction

with the aerodynamic nonlinearities (SA = 1), for the controlled/
uncontrolled system is presented in Fig. 6. The dotted lines iden-

tify the cases in which hard structural nonlinearity are included
(B = 50), whereas the solid lines identify the cases in which the
structural nonlinearities are ignored (B = 0). The control acts in

both situations toward the stabilization of the system. Also, the un-

stable LCO that occurs when only the aerodynamic nonlinearities
are considered can be converted to a stable LCO.

Figures 7 and 8 show that soft structural nonlinearities (B = - 10)
result in a catastrophic flutter boundary and that via a combined

I

0.25 _. _"

.....................................................

-O.75

0.4 0.8 1,.2 1.6 2.0 2.4

Fig. 6 Influence of the structural and aerodynmical nonlinearities on
the Lyapanov first quantity 4 L in the p_,_ence/al)_euee of linear and
nonlinear active control gains. Aerodynamic nonlinearities retained.
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-0-_ ///
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:/

0 0.4 0AI 1.2 1.6

x_

Fig. 7 ConversJon of the unstable to stable LCO via nonlinear active
control, for system encompassing structural soft nonlinearity.
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-2
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\¢,_.no

'_,.._e._ _ "_. _=l;6s=l; L>0:VMr_

I°--_c° I '_
11_,_co I

B=-IO
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Fig. 8 Unstable LCO for systems encompassing structural soft nonlin-
earity, aerodynamical nonlinearities, and linear active controL
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active conU_l (_l =0.5, _: = lO0¢t) the unstable LCO can be-
come stable (Fig. 7). Moreover, it clearly appears that, when soft

structural (B < 0) and aerodynamic nonlinearities are present, the

linear active control (V_l > 0, _2 = 0) cannot change the character

of the flutter boundary (Fig. 8).

From Eq. (23), which defines the Lyapunov first quantity, 4 the be-

nign flutter boundary is expressed in closed form. When Eqs. (28a)

and (28b) are used, the character of the flutter boundary is exam-

ined and has been plotted in Figs. 9-11. Each of Figs. 9-11, dis-

play in the plane (V, _,eag_) the benign and catastrophic charac-

ters of the flutter boundary for the actively controlled wing section

where X = M_/(_,_ar,). The corresponding Lyapunov first quan-

tity is shown in Figs. 12-14 in the plane (L, _-niO_t)- In Figs. 9-
15, the aerodynamic and hard structural nonlinearities have been

included, t_A = 1 and _s = l; B ----50. In Figs. 9-15, the transition

from catastrophic to benign flutter is shown. Figures 9-15 help one

2 _ •

1.5

ms
Z

-0.5

0.4 0.8

Fig. 12 Influence of the
quantit_ L.

the Lyapunov first

120

leo

80
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X. -- u--_ u:o, V,< Vp

".NV, ".
.. "* . p,t_ I.IN

OJI 1,2 1JI lJ 2-4

Fig. 9 Stable and unstable LCOs in the presence of Hnear control
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Fig. 15 Stable and unstable LCOs with and without control inpresence
of both nonlinearities; comparison between SWT and PTA prediction.
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Table 2 Stable and unstable LCOs for PTA and SWT

101°L(Vr), 101°L(VF),

_ttigut _.flutter _.r, PTA Xr, SWT PTA SWT

1.200 2.182 2.263 2.386 --6.679
1.208 2.189 2.256 2.378 --5.402
1.216 2.196 2.248 2.370 -4.164
1.224 2.203 2.241 2.362 -2.965
1.232 2.211 2.234 2.355 - 1.803
1.240 2.218 2.226 2.347 -0.676
1.248 2.225 2.219 2.339 0.416
1.256 2.232 2.212 2.332 1.474
1.264 2.239 2.205 2.325 2.501
1.272 2.246 2.198 2.317 3.496
1.280 2.253 2.191 2.310 4.461
1.288 2.260 2.185 2.303 5.396
1.296 2.267 2.178 2.296 6.304
1.304 2.274 2.171 2.289 7.183
1.312 2.281 2.164 2.282 8.037
1.320 2.288 2.158 2.275 8.865
1.328 2.295 2.151 2.268 9.668
1.336 2.302 2.145 2.261 10.447
1.344 2.309 2.139 2.254 11.202
1.352 2.316 2.132 2.248 11.935
1.360 2.322 2.126 2.241 12.646

- 15.437
-14.107

,t -12.817
_ - 11.566

- 10.352
-9.175
-8.033
-6.925
-5.849
-4.806

I

-3.793

i

- 1.857
-0.930

-0.031
0.842
1.689

: 2.512

3.312
4.088
4.842

O

to understand the behavior of the aeroelastic system in the presence
of linear and nonlinear active control.

The stable and unstable characters of the LCOs via the use of the

two different aerodynamic theories (PTA and SWT) are presented

in Fig. 15. From Fig. 15 and Table 2, one can infer that the transition

from the stable LCO to the unstable LCO occurs at slightly lower

Mach numbers (less then 3%) for the PTA as compared to those pre-

dicted by the SWT. This implies that the PTA provides conservative

results as compared to the SWT.

Conclusions

An original LCO analysis was presented. In contradistinction with

the ones generally used in the literature, where the character of the

flutter boundary is determined from the path variation amplitude of
displacement quantities, in the present approach this information is
obtained via the Lyapunov first quantity. 4

It was shown that in some circumstances, the aerodynamic and

hard structural nonlinearities contribute in different ways to the de-
termination of stable or unstable LCOs. It was shown that the hard

structural nonlinearities result in a stable LCO, whereas the soft

structural nonlinearities result in an unstable LCO. At high flight

Mach numbers, the aerodynamic nonlinearities are primary contrib-
utors to the destabilization of the aeroelastic system. This implies

that with increasing the hypersonic flight speed, when the aero-

dynamic nonlinearities become prevalent, an unstable LCO occurs

irrespective of the presence of hard structural nonlinearities. On the
other hand, soft structural nonlinearities (B < 0) contribute in the

same sense, as the aerodynamic nonlinearities, to the unstable LCO.
It is also shown that active control can be used to increase the flutter

speed and to convert the catastrophic flutter boundary into a benign
flutter boundary and/or to shift the transition between these two

states toward higher flight Mach numbers.

The issue of generating the active control moment was not ad-
dressed. It is the authors' belief that this can be produced via a device

operating similarly to a spring, whose linear and nonlinear charac-
teristics can be controlled, but additional analysis are required to

confirm this observation.

Appendix A: Coefficients Occurring in Eqs. (16)

The coefficients of the aeroelastic governing system represented

in state-space form [Eqs. (16)]:

-2 2
O) r a

a[ 3) -- (A1)
v'- -

a_3) = M_olzx.r_(1 + _,) - VZy[(xo - 1)X,_ + r_z] (A2)

6aa_) 2 = M_o(1 + r)y3[(xo- 1)X. + rz] (A3)
12/z(r_ 2 - X_)

t_ (3) = B Xur2
sa222 (A4)

(_ (3) X_ r2
ca222 = 92 (A5)

v2(d -

a4(3, = Vy[(3x 2 -- 6Xo + 4)X_ + 3(xo--l)r_ 2] +6M_#G,X.4

3VMoo#(r 2 -- 2_)

(A6)

al 4) = ff92Xa (A7)

V 2(r2 -- X_)

a: ) = V2y(xo - 1 + Xa) - Moolzr2( 1 + 9t) (A8)

V2M .(r -
2

8sa_ = -B r_ (A9)
-
2

_(4) --92 ra (A10)
ocu222 :

V2( r2 - X_)

/_ (4) y3Moo(l + y)(xo - 1 + X,,)
Aa222 = (AI 1)

12.(r -

a_4) = V_.(xo - 1 + X,,) + 2M_#go(hx. (A12)

a4(4)= V_.[(3x2-6xo+4) + 3(xo-- l)xa] +6M_Izr2(a
3V Mo¢,(r_ - X_)

(Al3)

Appendix B: Coefficients A_ ) Intervening in Eq. (23)

The various elements of Eq. (24), evaluated on the instability

boundary, are expressed as

a(D ^ (3)
(l/Ao)(Ot13az2 2 . ^ (4)\ 3= "1- 0t 14a222 }ot,H (BI)"'111

a<2) ! A ^ (3)( / o)(Otzsa22 z . ^ (')_ .3''222 = -t- 0t24a222/u22 (B2)

A<2) 1 A ^ (3): + 0/24a222) O_220/12 (B3)"'112 ( / O)(Ot23a222 ^ (4) 2

A(I) ^ (3)
= + _14a222) _'i 20'22 (B4)"*122 (l/Ao)(°t13a222 ^ (4) 2

where the adjoint of a matrix is defined as A0[ffjp]-tand A 0 = Itof_/II
is the determinant of the matrix of coefficient a_j. In addition, the

parameters a,.j are

a2(2) a4(2) a_3) a4(3)

ott2=c a2_t) a41) +c a_ 1) a4(1)
(B5)

o_2, = a[ _) a(4t) - c2a_ z) (B6)

aJ ') a4(', a_3) a_3,

0t22=c a_2' a4(2) +c a_2) a42)

(B7)
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Appendix C: Coefficients AI and A2

Appearing in Eq. (28c)

A 1
(SsB + ac_z)r_

(el)+ (_.x_ - _)-=-,_ + (_.x. - _.)-,_-_]

A2 = _AMoo(l_ +_ r)y3 { {_,3[(x°X'_) -- 1)X,, + r j]

-- _14(Xo -- I + Xa)}O1231 Jl- 1_23[(X0- l)X . -[-1.2]

-- _24(x0 -- 1 + Xa)}ot 3 + 1_23[(x0 -- 1)X,_ + r2]

-- "_z4(xo -- 1 + Xa)}ctzzoqZ2 + {Z,,[(Xo -- 1)X_ + r 2]

-- ,_I4(X0 -- l + Xa) }or,2 otz } (C2)
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